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Abstract

We consider the motion of relativistic particles described by an action which is a function of the curvature
and torsion of the particle path. The Euler–Lagrange equations and the dynamical constants of the motion
are expressed in a simple way in terms of a suitable coordinate system. The moduli spaces of solutions in a
three-dimensional pseudo-Riemannian space form are completely exhibited.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

This paper deals with the motion of relativistic particles described by an action which is a
function of the curvature and torsion of the particle path. The model of a particle with torsion was
investigated in (2+1)-Minkowskian space [1]. It was shown that, at classical level, the squared
mass of the system is bounded from above and that, besides the massive solutions of the equations
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of motion, the model must also have massless and tachyonic solutions. A relativistic model of
the anyon, describing the states of the particle with torsion τ with the maximum value of the
mass, was constructed in ref. [2]. In ref. [3], the classical equations of motion of the model
whose Lagrangian function is f = −m+ ατ are obtained. This model of relativistic particle with
torsion (whose action appears in the Bose–Fermi transmutation mechanism) is also studied in ref.
[4], where it is canonically quantized in the (2 + 1)-Minkowskian and 3-Euclidean spaces. The
solutions of the equations of motion in the massive, massless and tachyonic sectors are found by
using Hamiltonian formalism. In ref. [5], the author reconsiders the simplest models describing
spinning particles with rigidity, both massive and massless, and describes the moduli spaces of
solutions in (2+1)-backgrounds with constant curvature.

In (3 + 1)-dimensions there are also some geometrical models of relativistic particles. It seems
interesting to investigate these models and to establish which of them have a maximal symmetry
[6]. For instance, f = a+ bk, a �= 0, describes a massive relativistic boson [7]; f = ck models
a massless particle with an arbitrary (both integer and half-integer) helicity [8]. In ref. [9], the
author studied the consequences of coupling of the highest curvature to the Lagrangian of a
massive spinless particle. More recently, in ref. [10], it is considered a relativistic particle whose
dynamics is determined by an action depending on the torsion τ. The Euler–Lagrange equations
are obtained but unfortunately, as the authors pointed out, these higher order differential equations
do not appear to be tractable in general. In ref. [11], we also consider mechanical systems linearly
depending on the curvature and the torsion of the particle path and obtain the moduli space of
solutions in four-dimensional background spaces.

The main purpose of this paper is providing the moduli space of solutions of mechanical
systems, in three-dimensional pseudo-Riemannian space forms, whose Lagrangian is an arbitrary
function on the curvature and torsion of the particle path. In Sections 2 and 3, we present the
model, whose action is given by

L(γ) =
∫
γ

f (k, τ) ds,

where f is a real arbitrary function. By using Killing vector fields along curves as a key tool,
we obtain and solve the motion equations for these Lagrangians. In Section 4, we integrate the
Frenet equations finding out the critical curves, which are critical points of the Lagrangian, in
terms of a suitable coordinate system. We point out that a similar study for flat spaces has been
realized in refs. [10,12], where it is shown that the trajectories corresponding to a Lagrangian with
a linear dependence on k are determined by a quadrature in τ. With the aim of getting a nearly
self-contained paper, in Appendix A, we include an appendix about the Lie algebras o(4, ν),
ν = 0, 1, 2.

2. The model and the motion equations

Let M3
ν (C) be a three-dimensional pseudo-Riemannian space form of curvature C and index

ν. Let γ : I → M3
ν (C) be an immersed curve with speed v(t) = |γ ′(t)|, curvature k, torsion τ and

Frenet frame {T,N,B}. The Frenet equations are written down as follows⎧⎪⎪⎨
⎪⎪⎩

∇T T = ε2kN,

∇TN = −ε1kT + ε3τB,

∇TB = −ε2τN,
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where ε1 = 〈T, T 〉, ε2 = 〈N,N〉 and ε3 = 〈B,B〉. Let

L(γ) =
∫
γ

f (k, τ) ds (1)

be the action for any real function f defined on an open set of R
2. Let Γ = Γ (t, r) : [0, L] ×

(−δ, δ) → M be a variation of a curve γ : [0, L] → M withΓ (t, 0) = γ(t). Associated withΓ , we
consider the variation vector field W = W(t) = ∂	

∂r
(t, 0) along γ(t). We also write V = V (t, r) =

∂	
∂t

(t, r), W = W(t, r), v = v(t, r), T = T (t, r), N = N(t, r), B = B(t, r), etc., with the obvious
meanings. Let s denote the arclength parameter, and let V (s, r),W(s, r), etc., be the corresponding
reparametrizations. To obtain the first variation equation we introduce general formulas for the
variations of v, κ and τ along γ in the direction of W. Then from the Frenet equations we obtain

W(v) = ε1v〈∇TW, T 〉,W(k) = 〈∇2
TW,N〉 − 2ε1k〈∇TW, T 〉 + ε1C〈W,N〉,

W(τ) = ε1k〈∇TW,B〉 − ε1τ〈∇TW, T 〉 + T
(ε2

k
(〈∇2

TW,B〉 + ε1C〈W,B〉)
)
.

Throughout this paper, the trivial case of geodesics (k = 0) will be excluded. Then, by using
standard arguments involving the above formulas and integration by parts, the first variation of
L(γ) along γ in the direction of W is given by

L′(0) = [B(γ,W)]L0 −
∫ L

0

〈
∇T P − ε1CfkN + ε1ε2C

f ′
τ

k
B,W

〉
ds, (2)

where the vector P is given by

P = ε1(f − (2kfk + τfτ))T + ε1kfτB − ∇T (fkN) + ε2∇T
(
f ′
τ

k
B

)

and the boundary term is

B(γ,W) =
〈

∇2
TW, ε2

fτ

k
B

〉
+
〈
∇TW, fkN − ε2

k
f ′
τB
〉

+
〈
W,P + ε1ε2Cfτ

k
B

〉
.

Observe that, we have used fk and fτ to denote the partial derivatives of f with respect to k and τ,
respectively. On the other hand, we restrict ourselves to variations with fixed endpoints having the
same Frenet frames on them. Then [B(γ,W)]L0 = 0, so that the critical curves are characterized
by the vanishing of the Euler–Lagrange operator E

E := −
(

∇T P − ε1CfkN + ε1ε2C
f ′
τ

k
B

)
= 0. (3)

It is a straightforward computation to show that Eq. (3) is equivalent to the Euler–Lagrange
equations

−ε1ε2kf − ε2(ε3τ
2 − ε1k

2)fk + 2ε1ε2kτfτ + f ′′
k +

(
τ
f ′
τ

k

)′
+ τ

(
f ′
τ

k

)′
+ ε1Cfk = 0,

(4)

ε3τf
′
k + ε3

τ2

k
f ′
τ + ε3 (τfk)

′ − ε1 (kfτ)
′ − ε2

(
f ′
τ

k

)′′
− ε1ε2C

f ′
τ

k
= 0. (5)
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3. Solving the motion equations

We are going to integrate the motion equations. To do that, we will use the ideas involved in
Noether’s theorem in order to get invariants which provide suitable integral equations. We will
first obtain two very useful Killing vector fields.

Proposition 1. The critical curves of the Lagrangian (1) admit two Killing vector fields P and J
given by

P = ε1(f − (kfk + τfτ))T −
(
f ′
k + τ

k
f ′
τ

)
N +

(
−ε3τfk + ε1kfτ + ε2

(
f ′
τ

k

)′)
B, (6)

J = −ε1fτT − f ′
τ

k
N − ε3fkB, (7)

satisfying that

(i) E = −(∇T P + εCJ ∧ T )
(ii) ∇T J = −P ∧ T

where ε = ε1ε2ε3.

Proof. In a flat space, the Euler–Lagrange equations yield P is a constant vector field along the
curve. On the other hand, from the Frenet equations, a direct computation allows us to write P as

P = ε1(f − (kfk + τfτ))T −
(
f ′
k + τ

k
f ′
τ

)
N +

(
−ε3τfk + ε1kfτ + ε2

(
f ′
τ

k

)′)
B.

Let Z be a constant vector field and choose a rotational vector field of the form W = γ ∧ Z as
variational vector field. Then, we find that the curves of the variation have the same curvature and
torsion functions as the starting curve, so that L′(0) = 0. Now, from (2) we get

L′(0) = [B(γ, γ ∧ Z)]L0 +
∫ L

0
〈E, γ ∧ Z〉 ds,

so that, as the Euler operator vanishes on critical curves, we have that

[B(γ, γ ∧ Z)]L0 = 0.

Finally, as the same reasoning holds for any real in the interval (0, L), we find that B(γ, γ ∧ Z) is
constant along critical curves. As Z was any constant vector field, we conclude that〈

∇T T ∧ Z, ε2
fτ

k
B

〉
+
〈
T ∧ Z, fkN − ε2

f ′
τ

k
B

〉
+ 〈γ ∧ Z,P〉 = constant.

Operating here, we obtain 〈J − γ ∧ P,Z〉 = constant, where

J = −ε1fτT − f ′
τ

k
N − ε3fkB.

Therefore, V = J − γ ∧ P is a constant vector field, which means that J is a translation followed
by a rotation, and so it is a Killing vector field.

Then, we have shown that P and J are restrictions, along critical curves, of Killing fields in
flat spaces. Following Langer and Singer (see ref. [13]), we define a Killing vector field along a
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curve as a vector field W such that W(v) = W(k) = W(τ) = 0. It is easy to show that, in space
forms, a Killing vector field along a curve is the restriction of a Killing vector field. Then, from
(i) and (ii), a straightforward computation shows that P and J are also Killing vector fields when
C �= 0. �

The power of Killing vector fields as a tool is pointed out in the following result.

Theorem 2. (Integral equations) The critical curves of the Lagrangian (1) satisfy the integral
equations{

〈P,P〉 + εC〈J, J〉 = d,

〈P, J〉 = e,
(8)

for suitable constants d and e. They are written, in terms of f, as

ε1(f − (kfk + τfτ))
2 + ε2

(
f ′
k + τ

k
f ′
τ

)2 + ε3

(
−ε3τfk + ε1kfτ + ε2

(
f ′
τ

k

)′)2

+ εC
(
ε1f

2
τ + ε2

(
f ′
τ

k

)2

+ ε3f
2
k

)
= d,

− ε1fτ(f − (kfk + τfτ)) + ε2
f ′
τ

k

(
f ′
k + τ

k
f ′
τ

)

− fk
(

−ε3τfk + ε1kfτ + ε2

(
f ′
τ

k

)′)
= e.

Furthermore, these equations are equivalent to the Euler–Lagrange ones provided that 〈J, J〉 is
not constant.

Proof. From Proposition 1, we get

〈E, P〉 = − 1
2T (〈P,P〉 + εC〈J, J〉),

〈E, J〉 = −T 〈P, J〉,
from which we deduce (8). Now, we see that the equivalence between (8) and the Euler–Lagrange
equations occurs when 〈P, J ∧ T 〉 does not vanish. But this condition means that the systems{ 〈E, P〉 = 0

〈E, J〉 = 0
and

{
〈E, N〉 = 0

〈E, B〉 = 0

are equivalent. As ∇T J = −P ∧ T , we have that 〈P, J ∧ T 〉 = 1
2T 〈J, J〉, which proves the equiv-

alence of the systems provided 〈J, J〉 is not constant. �

Remark. The constants appearing in Theorem 2 can be interpreted in terms of the mass M and
the spin S of the particle. Indeed, generalizing Plyushchay’s model the relationships are given by

〈P,P〉 + εC〈J, J〉 = ε1M
2, 〈P, J〉 = MS.

When C = 0, P and J can be interpreted as the linear and the angular, respectively, momenta of
the particle.
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3.1. Integrating the Euler–Lagrange equations when 〈J, J〉 is constant

It is easy to see, from Proposition 1, that 〈P, J ∧ T 〉 = 0, provided 〈J, J〉 is constant. Then P,
J and T are linearly dependent. Moreover, when 〈J, T 〉 is constant, fk and fτ also are constant,
because

fτ = −〈J, T 〉 and f 2
k = 〈J, B〉2 = ε3(〈J, J〉 − ε1〈J, T 〉2).

Then the critical curves of the Lagrangian density f (k, τ) = fkk + fττ +m are well known and
they are generalized helices (see refs. [5] and [11]).

Then, we can assume that 〈J, T 〉 is not constant. Furthermore, J and T are not collinear,
otherwise 〈J, T 〉2 = ε1〈J, J〉. Therefore, the frame {T, J, J ∧ T } allows us to get the following
system of equations, which is equivalent to the Euler–Lagrange one,

〈∇T P + εCJ ∧ T, J〉 = 0, 〈∇T P + εCJ ∧ T, J ∧ T 〉 = 0, 〈J, J〉 = const. (9)

As

〈∇T P, J〉 = T 〈P, J〉 − 〈P,∇T J〉 = T 〈P, J〉,
from Proposition 1 the first equation of (9) writes down as 〈P, J〉 = const.

From the third equation, we deduce that P = αT + βJ . Therefore, when β �= 0, the first equa-
tion reduces to 〈P,P〉 = const., because

〈∇T P, J〉 =
〈

∇T P, 1

β
(P − αT )

〉
= 1

β
〈∇T P, P〉,

and 〈∇T P, T 〉 = 0. When β = 0, we see that α should be constant. Summarizing, to solve the
second equation of (9), we can suppose that 〈P,P〉, 〈P, J〉 and 〈J, J〉 are all constant.

On the other hand, we compute

〈∇T P, J ∧ T 〉 + εC〈J ∧ T, J ∧ T 〉 = −|P ∧ T |2 + εC|J ∧ T |2 − ε2k〈P, J ∧N〉,
where we have used that 〈P, J ∧ T 〉 = 0 and ∇T J = −P ∧ T . Moreover, we can write

−|P ∧ T |2 + εC|J ∧ T |2 = −ε2ε3αk〈J, B〉.
As P ∧ J = αT ∧ J , we get

α = 〈P ∧ J, T ∧ J〉
|J ∧ T |2 and β = 〈P,N〉

〈J,N〉 = k
f ′
k

f ′
τ

+ τ

which are related by

α = ε1(〈P, T 〉 − β〈J, T 〉) = ε1

(
f − kfk + k

f ′
kfτ

f ′
τ

)
. (10)

Note that 〈J,N〉 �= 0, because 〈J, T 〉 is not constant.
Now, we obtain a system, equivalent to (9), in terms of f and its partial derivatives:

f ′
k

f ′
τ

= 〈P, J〉 − τ〈J, J〉 + ε1(f − kfk)fτ
ε1εk|J ∧ T |2 , (11)

(c1 − εCf 2
τ + (f − (kfk + τfτ))

2)(〈J, J〉ε1 − f 2
τ )

= ε1kfk((f − (kfk + τfτ))〈J, J〉 + fτ〈P, J〉), (12)
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〈J, J〉 = ε1f
2
τ + ε2

(
f ′
τ

k

)2

+ ε3f
2
k , (13)

where c1 = ε1(εC〈J, J〉 − 〈P,P〉).
Eq. (11) lead us to the relation

τ′(Afττ − fkτ) = k′(fkk − Afτk), (14)

where

A(k, τ) = 〈P, J〉 − τ〈J, J〉 + ε1(f − kfk)fτ
ε1εk|J ∧ T |2 .

Furthermore, by assuming that fkkfττ − f 2
kτ �= 0, it is easy to see thatAfττ − fkτ and fkk − Afτk

do not vanish simultaneously. Let us choose the first one. Then, from the Eqs. (13) and (14) we
get

(k′)2 = ε2
k2(Afττ − fkτ)2

(fkkfττ − f 2
kτ)

2
(〈J, J〉 − ε1f

2
τ − ε3f

2
k ).

Now, Eq. (12) is of the form F (k, τ) = 0, so that when ∂F
∂τ

�= 0, we find τ as a function of k and
solve k by quadratures.

If fkk − Afτk �= 0, we can proceed similarly.

Remark. Whether f (k, τ) only depends on k or τ, a straightforward computation shows that the
only critical curves are generalized helices.

3.1.1. P and J are collinear
An interesting situation where 〈J, J〉 is constant occurs when P = βJ . Here, it is included the

case where the critical curves are generalized helices but not classical helices, as it can be easily
checked. We observe that, when J is zero, the solutions are geodesics. In this case, we cannot
integrate the Frenet equations, but we can do the Euler–Lagrange ones. As ∇T J = −P ∧ T , we
deduce that

E = −β′J + (β2 − εC)J ∧ T = 0,

and

−β′〈J, T 〉 = 0, (β2 − εC)|J ∧ T |2 = 0.

It is not difficult to see that this happens only when one the following cases holds:

(i) J = 0,
(ii) 〈J, T 〉 and β are both constant and J = ε1〈J, T 〉T ,

(iii) β2 = εC.

The solutions are geodesics in the two first cases, because they only occur when fk and fτ both
vanish. In the third case, the Euler–Lagrange equations are trivially satisfied. Therefore, to get
the critical curves it is enough to look for curves satisfying the system

〈P, T 〉 = β〈J, T 〉, 〈P,N〉 = β〈J,N〉, 〈P,B〉 = β〈J, B〉.
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Moreover, 〈P,N〉 = β〈J,N〉 can be deduced by taking covariant differentiation in 〈P, T 〉 =
β〈J, T 〉 relative to T, because P and J are Killing vector fields. Therefore, we have to solve
the system⎧⎨

⎩
f − kfk = (τ − β)fτ,

ε1kfτ + ε2

(
f ′
τ

k

)′ = ε3fk(τ − β).

By assuming that fkkfττ − f 2
kτ �= 0, we can obtain k as a function of τ or viceversa.

Assume that k is a function k = h(τ). Then

f ′
τ = k′fτk + τ′fττ = τ′(hτfτk + fττ),

so that

ε1hfτ + ε2

(
τ′(hτfτk + fττ)

h

)′
= ε3fk(τ − β).

This equation can be written as

a1(τ)(τ′)2 + a2(τ)τ′′ = a3(τ).

This is an ordinary differential equation which can be transformed into a linear one by doing
τ′ = w(τ) and y(τ) = w(τ)2. For instance, doing the calculations when f (k, τ) = k2 + τ2, we get

τ′ =
√
ε2(2τβ − τ2)(ε3(τ2 − 2τβ) − ε1τ2 + C1),

where C1 ∈ R and k2 = 2τβ − τ2. Therefore, we have found critical curves which are not gener-
alized helices.

3.2. Integrating the Euler–Lagrange equations when 〈J, J〉 is not constant: two interesting
cases

Setting Q = P − τJ , the integrals of the Euler–Lagrange equations can be written as{
〈Q,Q〉 + τ〈Q, J〉 + εC〈J, J〉 = d − τe,

〈Q, J〉 + τ〈J, J〉 = e.
(15)

Although these equations cannot be, in general, integrated, some particular cases such as f (k, τ) =
g(k) + aτ or f (k, τ) = g(τ) deserve our attention.

(3.1.a) f (k, τ) = g(k) + aτ

From the second equation of (15), we find out

τ = e+ ε1ag

ε3g
2
k

,

which we bring to the first equation of (15) to get k by quadratures

(k′)2 =

g2
k(d − ε1(g− kgk)2 − ε3a

2k2 − εC(ε1a
2 + ε3g

2
k))

− ε3(e+ ε1ag)(e+ ε1ag− 2ε1akgk)

ε2g
2
kg

2
kk

.

Note that g2
kg

2
kk �= 0, because we had assumed that 〈J, J〉 is not constant.
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(3.1.b) f (k, τ) = g(τ). For a physical meaning of a model with torsion see ref. [4] and refer-
ences therein.

Now, we first observe that from the first Euler–Lagrange equation we deduce that

ε1kfτ + ε2

(
f ′
τ

k

)′
= ε2

2τ

(
ε1ε2kf − τ′f ′

τ

k

)
.

From here, Q can be written as

Q = ε1gT + ε2

2τ

(
ε1ε2kg− τ′

g′
τ

k

)
B.

Then, from the first equation of (15), we get

(τ′)2 = k2(e+ ε1gτ(g− τgτ))

ε2τg2
ττ

. (16)

We also have that τg2
ττ �= 0, because 〈J, J〉 is not constant. A straightforward computation involv-

ing (16) gives

ε1g
2
τ + ε2

(
g′
τ

k

)2

= e+ ε1gτ

τ
.

Then, we can obtain k as a function of τ and therefore (16) can be rewritten as

k2 = 4ε3τ
3g2
ττ(τ(d − τe− ε1g

2 + ε1τggτ) − εC(ε1gτg+ e))

(τ(ggττ + g2
τ ) − ε1e− ggτ)2 .

Finally, we get

(τ′)2 = 4ε2ε3τ
2(τ(d − τe− ε1g

2 + ε1τggτ) − εC(ε1gτg+ e))(ε1gτ(g− τgτ) + e)

(τ(ggττ + g2
τ ) − ε1e− ggτ)2 .

(17)

Therefore, τ can be obtained by quadratures.
Note that to find k2, we have to assume that

τ(ggττ + g2
τ ) − ε1e− ggτ �= 0.

Otherwise, we should also have that

τ(d − τe− ε1g
2 + ε1τggτ) − εC(ε1gτg+ e) = 0.

Now, putting y(τ) = g(τ)2, we have the system

ε1

2
(τ2 − εC)y′ − ε1τy + dτ − e(τ2 + εC) = 0,

τ

2
y′′ − ε1e− y′

2
= 0,

whose solutions are of the form y(τ) = c1τ
2 − 2ε1eτ + ε1d − εc1C, where c1 is an arbitrary

constant. Therefore, the curvatures of the critical curves should satisfy

(τ′)2 = ε1ε2k
2(c1τ

2 − 2ε1eτ + ε1d − c1εC)2

ε1 dc1 − c2
1εC − e2

.

It is worth pointing out that we obtain critical curves for any given curvature, getting a pretty wide
family. However, this family does not appear in ref. [12], where the authors study the Lagrangian
(1) in flat spaces.
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4. The solving natural equations problem

In order to find explicitly the critical curves of the Lagrangian L(γ), we look for a suitable
coordinate system. To do that, we first give the following technical result

Lemma 3. P and J commute.

The method to obtain the coordinate system in flat spaces will be quite different from that
followed whenC �= 0. However, as we will soon see, the parameters λ = d2 − 4εCe2 and |P ∧ J |
seem to play an important role in the description of the particle path in any case. It is easy to show
that they are related by

λ = (〈P,P〉 − εC〈J, J〉)2 + 4C|P ∧ J |2. (18)

We begin with the description of the flat case.

4.1. Flat case (C = 0)

We have to distinguish two cases according to the causal character of P. The method given in
this case holds whenever P �= 0, even when 〈J, J〉 is constant.

4.1.1. P is not null
Choose an orthonormal coordinate system (z1, z2, z3) in R

3
ν, such that P and ∂z1 are collinear

and write P = u∂z1 . Let Rθ = eθA be the one-parameter group of rotations leaving invariant ∂z1

(and P), where

A =

⎛
⎜⎝

0 0 0

0 0 εr

0 −εθ 0

⎞
⎟⎠ ,

εr = 〈∂z2 , ∂z2〉 and εθ = 〈∂z3 , ∂z3〉. Let

ψ(z, r, θ) = Rθ(z∂z1 + r∂z2 )

be a cylindrical coordinate system.
Then ∂z = ∂z1 , ∂r = Rθ(∂z2 ) and ∂θ = −εθrRθ(∂z3 ). By using the properties of orthogonal

matrices, we find that ∂z and ∂r are unit vectors (having the same causal character as P and ∂z2 ,
respectively) and 〈∂θ, ∂θ〉 = εθr

2. On the other hand, we have

γ ∧ ∂z = r∂r ∧ Rθ(∂z1 ) = −εθrRθ(∂z3 ) = ∂θ.

Doing a translation, we get J = αP + γ ∧ P , where α = 〈J,P〉
〈P,P〉 . Therefore,

J = u(α∂z + ∂θ)

so that

P ∧ J = εrεθru
2∂r and P ∧ T = u

(
− rs
r
∂θ + εθεrrθs∂r

)
.

Hence, we get

r(s)2 = εr|P ∧ J |2
〈P,P〉2
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or equivalently

r(s) = |P ∧ J |√
λ

and

θ(s) =
∫ s

0

u〈P ∧ T, P ∧ J〉
|P ∧ J |2 dµ+ c1.

Finally, it is clear that

z(s) = u

〈P,P〉
∫ s

0
〈P, T 〉 dµ+ c2.

The constants c1 and c2 determine, respectively, a rotation around P and a translation in the
direction of P. This means that choosing two particular functions k and τ, satisfying the Euler–
Lagrange equations, all constants and freedom degrees are associated with rigid motions. This
is an important point because we know that the coordinate expressions are necessary, but not
sufficient. The fact of obtaining curves differing from rigid motions implies that all curves have
the same curvatures and the critical curves are completely determined.

4.1.2. P is null
Proceeding as above, choose an orthonormal coordinate system (z1, z2, z3) with 〈∂z1 , ∂z1〉 = 1

and 〈∂z2 , ∂z2〉 = −1 such that

P = 1√
2

(∂z1 − ∂z2 ).

We are going to see that this choice is always posible. Consider a Lorentzian plane π containing
P and let {w1, w2} be an orthonormal frame of π such thatw1 is spacelike andw2 timelike. Then,
we can suppose that P = µ(w1 + w2), with µ ∈ R. The coordinate system verifying the above
conditions is just {e1, e2, e3}, where

e1 = 2µ2 + 1

2
√

2µ
w1 + 2µ2 − 1

2
√

2µ
w2, e2 = 1 − 2µ2

2
√

2µ
w1 − 2µ2 + 1

2
√

2µ
w2,

and e3 is a unit vector orthogonal to the plane π. Now fix a one-parameter rotation groupRθ = eθA

leaving invariant P, with

A = 1√
2

⎛
⎜⎝

0 0 1

0 0 −1

−εθ −εθ 0

⎞
⎟⎠ ,

where εθ = 〈∂z3 , ∂z3〉. Considering the pseudo-orthonormal basis

{v1 = 1√
2

(∂z1 − ∂z2 ), v2 = 1√
2

(∂z1 + ∂z2 ), v3 = ∂z3},

we have A(v1) = 0, A(v2) = −εθv3 and A(v3) = v1. On the other hand, taking the coordinate
system ψ(z, r, θ) = zv1 + rRθ(v2), then the coordinate vector fields ∂z = v1, ∂r = Rθ(v2) and
∂θ = rRθA(v2) = −rεθRθ(v3) form a pseudo-orthogonal basis and {∂z, ∂r, 1

r
∂θ} is a pseudo-

orthonormal one having ∂z and ∂r as null vectors such that 〈∂z, ∂r〉 = 1. Moreover,

γ ∧ v1 = rRθ(v2) ∧ Rθ(v1) = rRθ(v2 ∧ v1) = −εθrRθ(v3) = ∂θ.
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Doing a translation, we get J = ev2 + γ ∧ P . Now, we are going to find v2 in terms of the
coordinate vector fields. To do that, observe that

Rθ(v3) = θv1 + v3 and Rθ(v2) = −εθ θ
2

2
v1 + v2 − εθθv3.

Then

v2 = −εθ θ
2

2
P + ∂r − θ

r
∂θ and J = −εθeθ

2

2
P + e∂r +

(
1 − e

θ

r

)
∂θ.

Therefore, developing 〈J, T 〉, 〈J, J〉 and 〈P, T 〉 we find out the coordinates z, θ and r as

z(s) = εθ

(
θ2r

2
− θr2

e
+ r3

3e2

)
− 1

e2

∫
〈J ∧ P, T ∧ J〉 dµ+ c1,

θ(s) = 1

2er
(r2 − εθ〈J, J〉), r(s) =

∫
〈P, T 〉 dµ+ c2.

When e = 0, as 〈T, T 〉 = 2zsrs + εθθ
2
s r

2, we get

z(s) = −
∫ |J ∧ T |2

2〈P, T 〉〈J, J〉 dµ+ c1, θ(s) = −
∫ 〈J, T 〉

〈J, J〉 dµ+ c2, r(s)2 = 〈J, J〉.
Obviously, the integration constants c1 and c2 produce rigid motions, so that the critical curves

are completely determined. Indeed, c1 gives the translation c1v1, whereas c2 produces the trans-

lation
−εθc3

2
6e2 v1 + c2v2 − εθc

2
2

2e v3 followed by the rotation Rc2/e. This rigid motion is associated
with the expression of J in terms of P, which is not invariant by rotations, so that we must apply
a translation to compensate this fact.

4.2. Non-flat case (C �= 0)

The manifold M3
ν (C) can be viewed as a hyperquadric in R

4
µ, where µ = ν or µ = ν + 1,

according to C > 0 or C < 0, respectively. Choose the following parametrization

X(θ, ϕ, ψ) = eθAeϕBc(ψ),

whereA,B ∈ o(4, µ) commute, c(ψ) = (a1(ψ), a2(ψ), a3(ψ), a4(ψ))t is a curve in R
4
µ satisfying

〈c(ψ), c(ψ)〉 = 1/C and t denotes transpose. It is easy to see that the coordinate vector fields are
given by

Xθ = AeθAeϕBc(ψ),

Xϕ = BeθAeϕBc(ψ),

Xψ = eθAeϕBc′(ψ),

and satisfy

gθθ ≡ 〈Xθ,Xθ〉 = −c(ψ)t�A2c(ψ), gϕϕ ≡ 〈Xϕ,Xϕ〉 = −c(ψ)t�B2c(ψ),

gψψ ≡ 〈Xψ,Xψ〉 = c′(ψ)t�c′(ψ), gθϕ ≡ 〈Xθ,Xϕ〉 = −c(ψ)t�ABc(ψ),

gθψ ≡ 〈Xθ,Xψ〉 = −c(ψ)t�Ac′(ψ), gϕψ ≡ 〈Xϕ,Xψ〉 = −c(ψ)t�Bc′(ψ),

where � stands for the diagonal matrix diag[ε1, ε2, ε3, ε4] representing the canonical metric in
R

4
µ.
Now, we have to distinguish according to the isometry Lie algebra is either o(4, δ), with δ = 0, 1

or o(4, 2).
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4.2.1. The isometry Lie algebra is o(4, δ), δ = 0, 1
We can assume that ε2 = ε3 = ε4 = 1 and ε1 = ε, where ε stands for det(�). In order to

find explicitly the coordinate functions of the critical curves we have to consider two cases: (1)
d2 + e2 �= 0 or (2) d = e = 0.

Case 1: (d2 + e2 �= 0). Then choose A = P1 and B = L1 (as in Appendix A.1) and c(ψ) =
(a1(ψ), 0, a3(ψ), 0)t. It is easy to show that the coordinate vector fields form an orthogonal system
with gθθ = a1(ψ)2 and gϕϕ = a3(ψ)2. Now, as P and J commute, we can apply a rotation, when
necessary (see Appendices A.1 and A.2), to write P and J as

P = p1Xθ + p2Xϕ

J = q1Xθ + q2Xϕ

}
, that is,

(
P

J

)
= M

(
Xθ

Xϕ

)
, M =

(
p1 p2

q1 q2

)
.

From (8), we deduce that

p2
1 + εCq2

1 = εCd, p2
2 + εCq2

2 = Cd,

p1q1 = εCe, p2q2 = Ce.

}
(19)

Writing down 〈J, J〉 in terms of qi, we find that

a1(ψ(s))2 = C〈J,J〉−q2
2

C(q2
1−εq2

2)
and a3(ψ(s))2 = q2

1−εC〈J,J〉
C(q2

1−εq2
2)
. (20)

Observe that q2
1 − εq2

2 �= 0, because 〈J, J〉 is not constant. On the other hand, we can writeXθ
and Xϕ in terms of P and J as

Xθ = α1P + α2J

Xϕ = β1P + β2J

}
, where

(
α1 α2

β1 β2

)
= M−1.

Finally, as T = θ′(s)Xθ + ϕ′(s)Xϕ + ψ′(s)Xψ, from (20) we conclude

θ(s) =
∫ 〈T,Xθ〉

gθθ
dµ = C(q2

1 − εq2
2)
∫
α1〈P, T 〉 + α2〈J, T 〉

C〈J, J〉 − q2
2

dµ+ c1

and

ϕ(s) =
∫ 〈T,Xϕ〉

gϕϕ
dµ = C(q2

1 − εq2
2)
∫
β1〈P, T 〉 + β2〈J, T 〉
q2

1 − εC〈J, J〉 dµ+ c2.

There are several choices for the signs of q1 and q2, but only one can be chosen, since the
corresponding critical curves differ each others from rotations. Now we have to distinguish two
subcases: ε = 1 and ε = −1.

Case 1.1 (ε = 1). Then the hyperquadric is S
3(C), so that ε = 1. It is easy to see that d > 0 and

λ > 0, unless 〈J, J〉 is constant. As before, we can suppose that q1 > q2 ≥ 0. A straightforward
computation shows that

• p1 = √
Cq2 and p2 = √

Cq1 when e > 0; and
• p1 = −√

Cq2 and p2 = −√
Cq1 when e < 0.

Case 1.2 (ε = −1). Then the hyperquadric is either S
3
1(C) or H

3(C), according toC > 0 orC < 0,
respectively. A similar computation as above shows that
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• p1 = √−εCq2 and p2 = −√−εCq1 when εe > 0; and
• p1 = −√−εCq2 and p2 = √−εCq1 when εe < 0.

Case 2: (d = e = 0). Take A = L2 + P3, B = L3 − P2 and c(ψ) = (a1(ψ), a2(ψ), 0, 0)t. Then
the coordinate vector fields form an orthogonal frame with gθθ = gϕϕ = (a1(ψ) + a2(ψ))2. In
this case, we can suppose that P = Xθ and J = q1Xθ + q2Xϕ. From (8), we deduce that q1 = 0
and q2

2 = −1/(εC), so that (a1(ψ) + a2(ψ))2 = −εC〈J, J〉. Without loss of generality, we can
assume that q2 > 0. Finally, as T = θ′(s)Xθ + ϕ′(s)Xϕ + ψ′(s)Xψ, we deduce that

θ(s) = − 1
εC

∫ 〈P,T 〉
〈J,J〉 dµ+ c1,

ϕ(s) = q2
∫ 〈J,T 〉

〈J,J〉 dµ+ c2.

Explicit expression of the coordinate system X
We have to distinguish several cases:

(a) ε = 1, then M3
ν (C) = S

3(C). Take a1(ψ) = 1√
C

sinψ and a3(ψ) = 1√
C

cosψ, and then

X(θ, ϕ, ψ) = 1√
C

(cos θ sinψ,− sin θ sinψ, cosϕ cosψ,− sin ϕ cosψ).

(b) ε = −1, then M3
ν (C) = S

3
1(C) or H

3(C). Now, we have two subcases:

(b1) d2 + e2 �= 0. Then

X(θ, ϕ, ψ) = (a1(ψ) cosh θ, a1(ψ) sinh θ, a3(ψ) cosh ϕ,−a3(ψ) sinh ϕ).

(b2) d = e = 0. Then

X(θ, ϕ, ψ) = (a1(ψ) + 1
2 (ϕ2 + θ2)(a1(ψ) + a2(ψ)),

a2(ψ) − 1
2 (ϕ2 + θ2)(a1(ψ) + a2(ψ)), −ϕ(a1(ψ) + a2(ψ)), θ(a1(ψ) + a2(ψ))).

The functions a1(ψ), a2(ψ) and a3(ψ) are given by

• a1(ψ) = 1√
C

sinhψ and a2(ψ) = a3(ψ) = 1√
C

coshψ in S
3
1(C).

• a1(ψ) = 1√−C coshψ and a2(ψ) = a3(ψ) = 1√−C sinhψ in H
3(C).

Finally, observe that there are interesting relationships among a1, a2 (or a3) and |P ∧ J |. In
cases (a) and (b1), we have

|P ∧ J | =
√

|Cλ|a1(ψ)a3(ψ) =
⎧⎨
⎩

√|Cλ|
2C sin 2ψ in (a)

√|Cλ|
2|C| sinh 2ψ in (b1)

In case (b2), the relation is

|P ∧ J | = 1√|C| (a1(ψ) + a2(ψ))2 = 1

|C|3/2 e2ψ.
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4.2.2. The isometry Lie algebra is o(4, 2)
First, we can suppose that ε = −1 and C < 0, since the anti-de Sitter space is the only space

form whose Lie algebra is o(4, 2). We will take a2(ψ) = 1√
εC

coshψ and a3(ψ) = 1√
εC

sinhψ,
and choose the matrices A and B as in Appendix A.2, having nine possible cases. In any of them,
the products gθθ and gϕϕ are constant (more precisely, they take values in {0,− 1

C
, 1
C
}). However,

gθϕ is a linear combination of cosh(2ψ) and sinh(2ψ), and therefore it depends on ψ in such a
way that it is not constant anywhere. Furthermore, gθψ and gϕψ both vanish. From Appendix A.2,
along with [P, J] = 0, we deduce that(

P

J

)
= M

(
Xθ

Xϕ

)
.

The coefficients q1 and q2 do not vanish, because 〈J, J〉 is not constant. From (8), we deduce that

p1p2 + εCq1q2 = 0, (p2
1 + εCq2

1)gθθ + (p2
2 + εCq2

2)gϕϕ = d,

p1q2 + p2q1 = 0, q1p1gθθ + q2p2gϕϕ = e.
(21)

Now λ = d2 − 4εCe2 = (d + 2
√
εCe)(d − 2

√
εCe) can be positive, negative or zero. We shall

take, without loss of generality, p1 with the same sign of q1 and then p2 and q2 will have
opposite sign. Moreover, when λ < 0 we can suppose q1 > 0 and take q2 with the same sign of
−(d + 2C〈J, J〉). If λ > 0, we can assume that q1 and q2 are positive.

From the left-hand equations in (21), we deduce that p1 = √
εCq1 and p2 = −√

εCq2. Fur-
thermore, considering the right-hand equations, we get

4εCgθθq
2
1 = d + 2

√
εCe and 4εCgϕϕq

2
2 = d − 2

√
εCe. (22)

The parameters d + 2
√
εCe and d − 2

√
εCe determine the choices of A and B. Thus, we shall

study separately the cases λ �= 0 and λ = 0.

Case 1: (λ �= 0). Now d + 2
√
εCe and d − 2

√
εCe do not vanish. A direct computation yields

gθθ = εθ/εC and gϕϕ = εϕ/εC.

On the other hand, from (8), we get

gθϕ = 2εC〈J, J〉 − d

4εCq1q2
. (23)

From the relationships among P, J, Xθ and Xϕ, it is easy to see that(
Xθ

Xϕ

)
=
(
α1 α2

β1 β2

)(
P

J

)
, where

(
α1 α2

β1 β2

)
= M−1, (24)

and therefore

Xθ ∧Xϕ = 1

det(M)
P ∧ J = 1

2p1q2
P ∧ J.

From these equations and T = θ′(s)Xθ + ϕ′(s)Xϕ + ψ′(s)Xψ it can be deduced that

θ′(s) = 〈T ∧Xϕ,Xθ ∧Xϕ〉
|Xθ ∧Xϕ|2 ,

ϕ′(s) = −〈T ∧Xθ,Xθ ∧Xϕ〉
|Xθ ∧Xϕ|2 .
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Then, from (24), we get

θ(s) = 2q1q2

∫ 〈T ∧ (β1P + β2J), P ∧ J〉
|P ∧ J |2 dµ

and

ϕ(s) = −2q1q2

∫ 〈T ∧ (α1P + α2J), P ∧ J〉
|P ∧ J |2 dµ.

A straightforward computation yields

gθϕ =
{

2a2(ψ)a3(ψ), if λ < 0,

a2(ψ)2 + a3(ψ)2, if λ > 0.

These expressions, together with a2
2 − a2

3 = 1
εC

, (18), (22) and (23), lead us to the following:

(a) when λ < 0

a2(ψ(s))2 = |P ∧ J |2 − √−λ
2εC

√−λ and a3(ψ(s))2 = |P ∧ J |2 + √−λ
2εC

√−λ ,

from which we deduce that

|P ∧ J | =
√−εCλ

2
(a2

2 + a2
3) =

√−εCλ
2εC

cosh 2ψ;

(b) when λ > 0

a2(ψ(s))2 = |2εC〈J, J〉 − d| − √
λ

2εC
√
λ

and a3(ψ(s))2 = |2εC〈J, J〉 − d| + √
λ

2εC
√
λ

,

so that we get

|P ∧ J | =
√
εCλa2a3 =

√
εCλ

2εC
sinh 2ψ.

Case 2: (λ = 0). We have to distinguish two subcases depending on the values of {d +
2
√
εCe and d − 2

√
εCe}.

Subcase 2.1. d + 2
√
εCe = 0 and d − 2

√
εCe �= 0. Then q1 = 1 (see Appendix A.2) and gθθ =

0, gϕϕ = εϕ/(εC), gθϕ = (a2 + a3)2 and q2
2 = 1

2εϕd. Now, from

gθϕ = 2εC〈J, J〉 − d

4εCq2

we deduce that

a2(ψ) = gθϕ + 1
εC

2
√
gθϕ

and a3(ψ) = gθϕ − 1
εC

2
√
gθϕ

.

Therefore,

|P ∧ J | =√2εCεϕd(a2 + a3)2 =
√

2εCεϕd

εC
e2ψ.
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The expressions for θ and ϕ agree with that obtained when λ �= 0, taking q1 = 1, but ϕ can
now be simplified as

ϕ(s) = 2ε
√
εCq2

∫
(〈P, T 〉 + √

εC〈J, T 〉)
2εC〈J, J〉 + d

ds.

Note that the symmetric case d + 2
√
εCe �= 0 and d − 2

√
εCe = 0 only differs from this in a

rotation.

Subcase 2.2. d + 2
√
εCe = 0 and d − 2

√
εCe = 0. Then, d = e = 0 and gθθ = gϕϕ = 0, q1 =

q2 = 1 and gθϕ = 2(a2 + a3)2. On the other hand, gθϕ = 1
2 〈J, J〉, so we have

a2(ψ(s)) = εC〈J, J〉 + 4

εC
√

2〈J, J〉 and a3(ψ(s)) = εC〈J, J〉 − 4

εC
√

2〈J, J〉 .

In this case,

|P ∧ J | = 4
√
εC(a2 + a3)2 = 4

√
εC

εC
e2ψ.

Again the expressions of θ and ϕ, when λ �= 0, hold, but they can be simplified as

θ(s) =
∫ −〈P, T 〉 + √

εC〈J, T 〉√
εC〈J, J〉 and ϕ(s) =

∫ 〈P, T 〉 + √
εC〈J, T 〉√

εC〈J, J〉 .

Explicit expression of the coordinate system X
Finally, we are going to describe how to construct the coordinate systems. In Appendix A.2,

we have seen that the possible choices of the matrices A and B are ξδ1 = √
2Pδ1, ξδ−1 = √

2Pδ2 and

ξδ0 = √
2(Pδ1 + Pδ2). Here, δ = 1 corresponds to the choices of A and δ = −1 with those of B.

Moreover, the lower index in ξ gives the causal character ofXθ for the choices of A and the casual
character of Xϕ for those of B. Now, we observe that

eωξ
δ
1 =

⎛
⎜⎜⎜⎝

cosω sinω 0 0

sinω cosω 0 0

0 0 cosω δ sinω

0 0 δ sinω cosω

⎞
⎟⎟⎟⎠ ,

eωξ
δ
−1 =

⎛
⎜⎜⎜⎝

coshω 0 sinhω 0

0 coshω 0 −δ sinhω

sinhω 0 coshω 0

0 −δ sinhω 0 coshω

⎞
⎟⎟⎟⎠ ,

eωξ
δ
0 =

⎛
⎜⎜⎜⎝

1 ω ω 0

−ω 1 0 −δω
ω 0 1 δω

0 −δω −δω 1

⎞
⎟⎟⎟⎠ .



A. Ferrández et al. / Journal of Geometry and Physics 56 (2006) 1666–1687 1683

Then by computing (eθAeϕBc(ψ)), we obtain the coordinate systems. For example,

(a) when Xθ and Xϕ are spacelike, the coordinate system X(θ, ϕ, ψ) is given by

1√
εC

(coshψ sin(θ + ϕ), coshψ cos(θ + ϕ), sinhψ cos(θ − ϕ),− sinhψ sin(θ − ϕ))

(b) when they are timelike, the coordinate system is

1√
εC

(sinhψ sinh(θ + ϕ), coshψ cosh(θ − ϕ), sinhψ cosh(θ + ϕ),− coshψ sinh(θ − ϕ)).

5. Conclusions

In ref. [11], we have studied actions inD = 3 spacetimes whose Lagrangian is a linear function
m+ nk + pτ on the curvature and torsion of the particle path, finding out that trajectories are
Lancret curves, or generalized helices. Indeed, the critical curves are always Lancret curves,
which are obtained by geometrical integration involving the Hopf fibrations (see also ref. [5]).
Here, we go further in a two-fold sense, assuming that the Lagrangian density is an arbitrary
function on the curvature and torsion of the particle path which is lying in a three-dimensional
pseudo-Riemannian space form. We have got two Killing vector fields along curves P and J
and exploited the machinery supplied by them, which became a fruitful tool in our earlier and
recent paper. Actually, the integral equations are reduced to a system involving P and J, which is
equivalent to the Euler–Lagrange equations if, and only if, 〈J, J〉 is not constant. Then we have
solved the motion equations and found out solutions which, as a pretty interesting fact, are not
generalized helices. We note that when the Lagrangian density is m+ nk + pτ, then 〈J, J〉 is
constant.

To obtain explicitly the critical curves of the Lagrangian, we have chosen suitable coordinate
frames where the Frenet equations have been integrated. With the help of the corresponding Lie
algebras, a complete system of solutions is given in the de Sitter S

3
1 and anti de Sitter H

3
1 worlds

as well as in the non-flat Riemannian space forms S
3 and H

3.
Finally, an open and interesting problem could be the searching for critical curves different

from the generalized helices when 〈J, J〉 is constant, as well as a suitable method to get them.
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Appendix A

We look for characteristic elements of the orbits of the Lie algebra o(4, ν), when ν = 0, 1, 2.
That is, given A ∈ o(4, ν), we apply a rotation G to choose a new coordinate system where
the matrix associated to A is Ā = GAG−1. Thus is obtained the orbit of A, where we wish to
find an element in a simple way. Now, there is a bijective mapping Φ : o(4, ν) → K such that
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Φ([A,B]) = −[Φ(A), Φ(B)], where K is the subset of Killing vector fields (see ref. [14]). Then,
by means of �, we use characteristic elements of the Lie algebra to find characteristic ones of K
(see ref. [15] for details).

A.1. o(4, 1)

We will show that any element of the Lie algebra o(4, 1) is given by a linear combination of
the vector fields Xθ and Xϕ.

Let Aij be a matrix such that aij = 1 and 0 the remaining entries. Let us define

Mij = Aij − εiεjAji,

where ε0 = −1 and εi = 1, i = 1, 2, 3. A basis of o(4, 1) is given by

Pi = M0i, L1 = M23, L2 = M31, L3 = M12.

It is not difficult to see that

[Pi, Pj] =
∑
k

εkijLk, [Li, Lj] = −
∑
k

εkijLk, [Li, Pj] = −
∑
k

εkijPk,

where εkij = 1, when {i, j, k} is an even permutation of {1, 2, 3}, and −1 otherwise.
Fix A ∈ o(4, 1) and define the orbit

orb(A) = {B ∈ o(4, 1) : B = GAG−1, for anyG = �i∈I exp(Xi) andXi ∈ o(4, 1), ∀i ∈ I},
I being a finite subset. It is clear that o(4, 1) is a disjoint union of orbits. To determine the orbit of
any A, first observe that when

AL(s) = exp(sL)A exp(−sL),

where L ∈ o(4, 1), then

A′
L(s) = [L,AL(s)].

Therefore, writing AL(s) and L in the above basis of o(4, 1)

AL(s) =
∑
i

li(s)Li +
∑
i

pi(s)Pi, L =
∑
i

αiLi +
∑
i

βiPi,

the following equations hold⎧⎪⎪⎪⎨
⎪⎪⎪⎩
l′k = −

∑
i,j

εki,j(αjli − βjpi),

p′
k = −

∑
i,j

εki,j(αjpi + βjli).

It is not difficult to see that the Casimir functions for o(4, 1), with the initial conditionAL(0) = A,
satisfy∑

k

lkpk = k1,
∑
k

l2k −
∑
k

p2
k = k2,

for certain constants k1 and k2. Then orb(A) is lying in a certain level set C ⊂ o(4, 1) of the Casimir
functions. To see that they exactly agree we have to show that C is connected and orb(A) is open.
As C is a disjoint union of its orbits, the connectedness will mean that it contains a single orbit.
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To prove that C is connected, we consider three-dimensional slices p = (p1, p2, p3) = const.
They are circles obtained by the intersection of a normal plane at p with a sphere of radius√
k2 + 〈p, p〉, i.e.,

〈l, p〉 = k1, 〈l, l〉 = k2 + 〈p, p〉,
where l = (l1, l2, l3). To compute the values of p where the slice is not empty we have to write
the condition that the distance from the plane to the origin is lower than the radius of the sphere,
that is,

k2 + 〈p, p〉 ≥ k2
1

〈p, p〉 .

This is a connected set and so is C. It is clear that, at each orbit except for the case k1 = k2 = 0,
there is at least a representative asL = aL1 + bP1. If k1 = k2 = 0, we can choose a representative
element L2 + P3. Finally, by choosing a non zero element of the Lie algebra of the form L =
aL1 + bP1, any other element commuting with L must be a linear combination of L1 and P1.
Analoguely we find that the elements commuting with L2 + P3 are of the form a(L2 + P3) +
b(L3 − P2)

A.2. o(4, 0) and o(4, 2)

We will see now that o(4, 2�), � = 0, 1, is isomorphic to the product o(3, �) × o(3, �). With
the above notation, we set

L
δ1
1 = (M01 + δ1M23), L

δ2
2 = (M02 + δ2M13), L

δ3
3 = (M12 + δ3M30),

where δi = ±1, i = 1, 2, 3. When ε0 = ε1 = 1 and ε2 = ε3 = ε, we obtain

[Lδ1
1 , L

δ2
2 ] = (1 − δ1δ2)Lεδ2

3 , [Lδ2
2 , L

δ3
3 ] = −ε(1 + εδ2δ3)L−δ2

1 ,

[Lδ3
3 , L

δ1
1 ] = −(1 − εδ1δ3)L−δ1

2 .

Therefore, if δ2 = 1, set

Pδ1 = 1√
2
Lδ1, Pδ2 = 1√

2
L−δ

2 , Pδ3 = 1√
2
L−εδ

3 ,

to get

[Pδ1, P
δ
2] = −εPδ3, [Pδ2, P

δ
3] = −εPδ1, [Pδ3, P

δ
1] = −Pδ2 .

Moreover, Pδi and P−δ
j always commute. Then o(4, 2�) splits as a direct sum of two commuting

subalgebras

o(4, 2�) = E1 ⊕ E−1,

where

E1 = span{P1
1 , P

1
2 , P

1
3 } and E−1 = span{P−1

1 , P−1
2 , P−1

3 }.
Both subalgebras can be identified with o(3, �). We look for canonical elements obtained from
rigid motions. We will study separately each direct summand, because when we apply a rotation
generated by an element ofE1, the component inE−1 is left invariant and viceversa. To determine
Eµ, µ = −1, 1, take A ∈ Eµ. If

AL(s) = exp(sL)A exp(−sL),
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then

A′
L(s) = [L,AL(s)].

If L = p1P
δ
1 + p2P

δ
2 + p3P

δ
3 and A = a1(s)Pδ1 + a2(s)Pδ2 + a3(s)Pδ3, it follows that⎧⎪⎪⎨

⎪⎪⎩
a′

1 = −ε(p2a3 − p3a2),

a′
2 = p1a3 − p3a1,

a′
3 = −(p1a2 − p2a1).

Then the Casimir function is

εa2
1 + a2

2 + a2
3 = k1.

Proceeding as above, the orbit of A in Eµ is lying in a certain level set C of the Casimir function
and we will show that is open in C. Now C is not always connected, however, when k1 �= 0 the
orbit agrees with one of its connected components. When k1 = 0 we can proceed as above to
show that there are two connected components which are lying in the same orbit.

As a canonical element on each orbit of o(3, 0) is of the form aPδ1, a canonical one in o(4, 0) is

aP1
1 + bP−1

1 .

Since, Pδ1 = 1√
2

(M01 + δM23), the above element can also be given by

aM01 + bM23.

On the other hand, there are three types of orbits in o(3, 1), depending on k1 > 0, k1 < 0 or
k1 = 0. The canonical elements in each type of orbit are

{aPδ1, aPδ2, (Pδ1 + Pδ2)},
where a ∈ R. Therefore, we get nine classes in o(4, 2)

aP1
1 + bP−1

1 , aP1
1 + bP−1

2 , aP1
1 + (P−1

1 + P−1
2 ),

aP1
2 + bP−1

1 , aP1
2 + bP−1

2 , aP1
2 + (P−1

1 + P−1
2 ),

(P1
1 + P1

2 ) + bP−1
1 , (P1

1 + P1
2 ) + bP−1

2 , (P1
1 + P1

2 ) + (P−1
1 + P−1

2 )

where a, b ∈ R. Note that any element can be written as aA+ bB, where A and B are com-
muting matrices. Furthermore, the simplest coordinates are obtained by taking A and B in
{√2Pδ1,

√
2Pδ2,

√
2(Pδ1 + Pδ2)}, better than in {Pδ1, Pδ2, (Pδ1 + Pδ2)}.
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